Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 70
Filter
1.
Am J Pathol ; 2024 May 03.
Article in English | MEDLINE | ID: mdl-38705380

ABSTRACT

Acute respiratory distress syndrome (ARDS) is a heterogeneous clinical syndrome that is most commonly triggered by infection-related inflammation. Lung pericytes can respond to infection and act as immune and proangiogenic cells; moreover, these cells can differentiate into myofibroblasts in nonresolving ARDS and contribute to the development of pulmonary fibrosis. Here, we aimed to characterize the role of lung cells, which present characteristics of pericytes, such as peri-endothelial location and expression of a panel of specific markers. To study their role in ARDS, we used a murine model of lipopolysaccharide (LPS)-induced resolving ARDS. We confirmed the development of ARDS after LPS instillation, which was resolved 14 days after onset. Using immunofluorescence and flow cytometry, we observed early expansion of neural-glial antigen 2+ ß-type platelet-derived growth factor receptor+ pericytes in murine lungs with loss of CD31+ ß-type platelet-derived growth factor receptor+ endothelial cells. These changes were accompanied by specific changes in lung structure and loss of vascular integrity. On day 14 after ARDS onset, the composition of pericytes and endothelial cells returned to baseline values. LPS-induced ARDS activated NOTCH signaling in lung pericytes, the inhibition of which during LPS stimulation reduced the expression of its downstream target genes, pericyte markers, and angiogenic factors. Together, lung pericytes in response to inflammatory injury activate NOTCH signaling that supports their maintenance and in turn can contribute to recovery of the microvascular endothelium.

2.
Cell Death Discov ; 10(1): 191, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38664396

ABSTRACT

Inflammasome assembly is a potent mechanism responsible for the host protection against pathogens, including viruses. When compromised, it can allow viral replication, while when disrupted, it can perpetuate pathological responses by IL-1 signaling and pyroptotic cell death. SARS-CoV-2 infection was shown to activate inflammasome in the lungs of COVID-19 patients, however, potential mechanisms responsible for this response are not fully elucidated. In this study, we investigated the effects of ORF3a, E and M SARS-CoV-2 viroporins in the inflammasome activation in major populations of alveolar sentinel cells: macrophages, epithelial and endothelial cells. We demonstrated that each viroporin is capable of activation of the inflammasome in macrophages to trigger pyroptosis-like cell death and IL-1α release from epithelial and endothelial cells. Small molecule NLRP3 inflammasome inhibitors reduced IL-1 release but weakly affected the pyroptosis. Importantly, we discovered that while SARS-CoV-2 could not infect the pulmonary microvascular endothelial cells it induced IL-1α and IL-33 release. Together, these findings highlight the essential role of macrophages as the major inflammasome-activating cell population in the lungs and point to endothelial cell expressed IL-1α as a potential novel component driving the pulmonary immunothromobosis in COVID-19.

3.
Antiviral Res ; 224: 105857, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38453031

ABSTRACT

The emerging SARS-CoV-2 variants are evolving to evade human immunity and differ in their pathogenicity. While evasion of the variants from adaptive immunity is widely investigated, there is a paucity of knowledge about their interactions with innate immunity. Inflammasome assembly is one of the most potent mechanisms of the early innate response to viruses, but when it is inappropriate, it can perpetuate tissue damage. In this study, we focused on the capacity of SARS-CoV-2 Alpha and Delta variants to activate the NLRP3 inflammasome. We compared the macrophage activation, particularly the inflammasome formation, using Alpha- and Delta-spike virus-like particles (VLPs). We found that VLPs of both variants activated the inflammasome even without a priming step. Delta-spike VLPs had a significantly stronger effect on triggering pyroptosis and inflammasome assembly in THP-1 macrophages than did Alfa-spike VLPs. Cells treated with Delta VLPs showed greater cleavage of caspase-1 and IL-1ß release. Furthermore, Delta VLPs induced stronger cytokine secretion from macrophages and caused essential impairment of mitochondrial respiration in comparison to Alpha VLPs. Additionally, infection of primary human monocyte-derived macrophages with the SARS-CoV-2 variants confirmed the observations in VLPs. Collectively, we revealed that SARS-CoV-2 Delta had a greater impact on the inflammasome activation, cell death and mitochondrial respiration in macrophages than did the Alpha variant. Importantly, the differential response to the SARS-CoV-2 variants can influence the efficacy of therapies targeting the host's innate immunity.


Subject(s)
COVID-19 , Inflammasomes , Humans , Inflammasomes/genetics , SARS-CoV-2/genetics , SARS-CoV-2/metabolism , COVID-19/metabolism , Macrophages
4.
Int Immunopharmacol ; 121: 110445, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37290319

ABSTRACT

The NLRP3 inflammasome is among the most potent intracellular sensors of danger and disturbances of cellular homeostasis that can lead to the release of IL-1ß and cell death, or pyroptosis. Despite its protective role, this mechanism is involved in the pathogenesis of numerous inflammatory diseases; therefore, it is seen as a potential therapeutic target. 1-methylnicotinamide (1-MNA) is a direct metabolite of nicotinamide and was previously shown to display several immunomodulatory properties, including a reduction in the reactive oxygen species (ROS). Here, we investigated whether 1-MNA could influence the activation of the NLRP3 inflammasome in human macrophages. In differentiated human macrophages we observed that 1-MNA specifically reduced the activation of the NLRP3 inflammasome. This effect was related to the scavenging of ROS, as exogenous H2O2 was able to restore NLRP3 activation. Additionally, 1-MNA increased the mitochondrial membrane potential, indicating that it did not inhibit oxidative phosphorylation. Moreover, at high but not low concentrations, 1-MNA decreased NF-κB activation and the level of pro-IL-1ß. Interestingly, 1-MNA did not reduce the secretion of IL-6 upon endotoxin stimulation, confirming that its primary immunomodulatory effect on human macrophages is dependent on the NLRP3 inflammasome. Taken together, we have shown for the first time that 1-MNA reduced the activation of the NLRP3 inflammasome in human macrophages via an ROS-dependent pathway. Our results indicate a novel potential use of 1-MNA in NLRP3-related disorders.


Subject(s)
Inflammasomes , NLR Family, Pyrin Domain-Containing 3 Protein , Humans , Inflammasomes/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Reactive Oxygen Species/metabolism , Hydrogen Peroxide/metabolism , Macrophages/metabolism , Niacinamide , Interleukin-1beta/metabolism , Caspase 1/metabolism
5.
Genes (Basel) ; 14(6)2023 06 20.
Article in English | MEDLINE | ID: mdl-37372475

ABSTRACT

The inhibition of histone deacetylases (HDACs) holds promise as a potential anti-cancer therapy as histone and non-histone protein acetylation is frequently disrupted in cancer, leading to cancer initiation and progression. Additionally, the use of a histone deacetylase inhibitor (HDACi) such as the class I HDAC inhibitor-valproic acid (VPA) has been shown to enhance the effectiveness of DNA-damaging factors, such as cisplatin or radiation. In this study, we found that the use of VPA in combination with talazoparib (BMN-673-PARP1 inhibitor-PARPi) and/or Dacarbazine (DTIC-alkylating agent) resulted in an increased rate of DNA double strand breaks (DSBs) and reduced survival (while not affecting primary melanocytes) and the proliferation of melanoma cells. Furthermore, the pharmacological inhibition of class I HDACs sensitizes melanoma cells to apoptosis following exposure to DTIC and BMN-673. In addition, the inhibition of HDACs causes the sensitization of melanoma cells to DTIV and BMN-673 in melanoma xenografts in vivo. At the mRNA and protein level, the histone deacetylase inhibitor downregulated RAD51 and FANCD2. This study aims to demonstrate that combining an HDACi, alkylating agent and PARPi could potentially enhance the treatment of melanoma, which is commonly recognized as being among the most aggressive malignant tumors. The findings presented here point to a scenario in which HDACs, via enhancing the HR-dependent repair of DSBs created during the processing of DNA lesions, are essential nodes in the resistance of malignant melanoma cells to methylating agent-based therapies.


Subject(s)
Antineoplastic Agents , Melanoma , Humans , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylase Inhibitors/therapeutic use , Valproic Acid/pharmacology , Poly(ADP-ribose) Polymerase Inhibitors/therapeutic use , Dacarbazine/therapeutic use , Histone Deacetylases/genetics , Histone Deacetylases/metabolism , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Melanoma/drug therapy , Melanoma/genetics , Melanoma/pathology , DNA , Alkylating Agents/therapeutic use
6.
BMC Cancer ; 22(1): 1254, 2022 Dec 02.
Article in English | MEDLINE | ID: mdl-36460969

ABSTRACT

The integrated stress response (ISR) facilitates cellular adaptation to unfavorable conditions by reprogramming the cellular response. ISR activation was reported in neurological disorders and solid tumors; however, the function of ISR and its role as a possible therapeutic target in hematological malignancies still remain largely unexplored. Previously, we showed that the ISR is activated in chronic myeloid leukemia (CML) cells and correlates with blastic transformation and tyrosine kinase inhibitor (TKI) resistance. Moreover, the ISR was additionally activated in response to imatinib as a type of protective internal signaling. Here, we show that ISR inhibition combined with imatinib treatment sensitized and more effectively eradicated leukemic cells both in vitro and in vivo compared to treatment with single agents. The combined treatment specifically inhibited the STAT5 and RAS/RAF/MEK/ERK pathways, which are recognized as drivers of resistance. Mechanistically, this drug combination attenuated both interacting signaling networks, leading to BCR-ABL1- and ISR-dependent STAT5 activation. Consequently, leukemia engraftment in patient-derived xenograft mice bearing CD34+ TKI-resistant CML blasts carrying PTPN11 mutation responsible for hyperactivation of the RAS/RAF/MAPK and JAK/STAT5 pathways was decreased upon double treatment. This correlated with the downregulation of genes related to the RAS/RAF/MAPK, JAK/STAT5 and stress response pathways and was associated with lower expression of STAT5-target genes regulating proliferation, viability and the stress response. Collectively, these findings highlight the effect of imatinib plus ISRIB in the eradication of leukemic cells resistant to TKIs and suggest potential clinical benefits for leukemia patients with TKI resistance related to RAS/RAF/MAPK or STAT5 signaling. We propose that personalized treatment based on the genetic selection of patients carrying mutations that cause overactivation of the targeted pathways and therefore make their sensitivity to such treatment probable should be considered as a possible future direction in leukemia treatment.


Subject(s)
Leukemia, Myelogenous, Chronic, BCR-ABL Positive , Leukemia, Myeloid , Humans , Animals , Mice , STAT5 Transcription Factor/genetics , Imatinib Mesylate/pharmacology , Imatinib Mesylate/therapeutic use , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics , Signal Transduction , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use
7.
Cancers (Basel) ; 14(15)2022 Jul 27.
Article in English | MEDLINE | ID: mdl-35892900

ABSTRACT

The search is ongoing for new anticancer therapeutics that would overcome resistance to chemotherapy. This includes chronic myeloid leukemia, particularly suitable for the studies of novel anticancer compounds due to its homogenous and well-known genetic background. Here we show anticancer efficacy of novel dicarboximide denoted BK124.1 (C31H37ClN2O4) in a mouse CML xenograft model and in vitro in two types of chemoresistant CML cells: MDR1 blasts and in CD34+ patients' stem cells (N = 8) using immunoblotting and flow cytometry. Intraperitoneal administration of BK124.1 showed anti-CML efficacy in the xenograft mouse model (N = 6) comparable to the commonly used imatinib and hydroxyurea. In K562 blasts, BK124.1 decreased the protein levels of BCR-ABL1 kinase and its downstream effectors, resulting in G2/M cell cycle arrest and apoptosis associated with FOXO3a/p21waf1/cip1 upregulation in the nucleus. Additionally, BK124.1 evoked massive apoptosis in multidrug resistant K562-MDR1 cells (IC50 = 2.16 µM), in CD34+ cells from CML patients (IC50 = 1.5 µM), and in the CD34+/CD38- subpopulation consisting of rare, drug-resistant cancer initiating stem cells. Given the advantages of BK124.1 as a potential chemotherapeutic and its unique ability to overcome BCR-ABL1 dependent and independent multidrug resistance mechanisms, future development of BK124.1 could offer a cure for CML and other cancers resistant to present drugs.

8.
Front Immunol ; 12: 708670, 2021.
Article in English | MEDLINE | ID: mdl-34367170

ABSTRACT

Adult hematopoietic stem and progenitor cells (HSPCs) respond to bacterial infections by expansion to myeloid cells. Sepsis impairs this process by suppressing differentiation of stem cells subsequently contributing to an ineffective immune response. Whether the magnitude of HSPCs impairment in sepsis is severity-dependent remains unknown. This study investigated dynamics of the HSPC immune-inflammatory response in the bone marrow, splenic, and blood compartments in moribund and surviving septic mice. The 12-week-old outbred CD-1 female mice (n=65) were subjected to a cecal ligation and puncture (CLP) sepsis, treated with antibiotics and fluid resuscitation, and stratified into predicted-to-die (P-DIE) and predicted-to-survive (P-SUR) cohorts for analysis. CLP strongly reduced the common myeloid and multipotent progenitors, short- and long-term hematopoietic stem cell (HSC) counts in the bone marrow; lineage-ckit+Sca-1+ and short-term HSC suppression was greater in P-DIE versus P-SUR mice. A profound depletion of the common myeloid progenitors occurred in the blood (by 75%) and spleen (by 77%) of P-DIE. In P-SUR, most common circulating HSPCs subpopulations recovered to baseline by 72 h post-CLP. Analysis of activated caspase-1/-3/-7 revealed an increased apoptotic (by 30%) but not pyroptotic signaling in the bone marrow HSCs of P-DIE mice. The bone marrow from P-DIE mice revealed spikes of IL-6 (by 5-fold), CXCL1/KC (15-fold), CCL3/MIP-1α (1.7-fold), and CCL2/MCP-1 (2.8-fold) versus P-SUR and control (TNF, IFN-γ, IL-1ß, -5, -10 remained unaltered). Summarizing, our findings demonstrate that an early sepsis-induced impairment of myelopoiesis is strongly outcome-dependent but varies among compartments. It is suggestive that the HSCPC loss is at least partly due to an increased apoptosis but not pyroptosis.


Subject(s)
Myelopoiesis , Sepsis/physiopathology , Acute Disease , Animals , Apoptosis , Caspase 3/metabolism , Cytokines/genetics , Female , Hematopoietic Stem Cell Mobilization , Hematopoietic Stem Cells/physiology , Mice
9.
JCI Insight ; 5(10)2020 05 21.
Article in English | MEDLINE | ID: mdl-32434988

ABSTRACT

Sepsis survivors suffer from increased vulnerability to infections, and lymphopenia presumably contributes to this problem. The mechanisms of the recovery of memory CD4+ T cells after sepsis remain elusive. We used the cecal ligation and puncture mouse model of sepsis to study the restoration of the memory CD4+ T cells during recovery from sepsis. Then, adoptive transfer of antigen-specific naive CD4+ T cells followed by immunization and BrdU labeling were performed to trace the proliferation and migration of memory CD4+ T cells. We revealed that the bone marrow (BM) is the primary site of CD4+ memory T cell homing and proliferation after sepsis-induced lymphopenia. Of interest, BM CD4+ T cells had a higher basal proliferation rate in comparison with splenic T cells. These cells also show features of resident memory T cells yet have the capacity to migrate outside the BM niche and engraft secondary lymphoid organs. The BM niche also sustains viability and functionality of CD4+ T cells. We also identified IL-7 as the major inducer of proliferation of the BM memory CD4+ T cells and showed that recombinant IL-7 improves the recovery of these cells. Taken together, we provide data on the mechanism and location of memory CD4+ T cell proliferation during recovery from septic lymphopenia, which are of relevance in studying immunostimulatory therapies in sepsis.


Subject(s)
Bone Marrow/immunology , CD4-Positive T-Lymphocytes/immunology , Cell Proliferation , Immunologic Memory , Sepsis/immunology , Animals , Bone Marrow/pathology , CD4-Positive T-Lymphocytes/pathology , Male , Mice , Mice, Inbred BALB C , Organ Specificity/immunology , Sepsis/pathology
10.
Int J Mol Sci ; 21(7)2020 Mar 30.
Article in English | MEDLINE | ID: mdl-32235585

ABSTRACT

The authors wish to make the following corrections to this paper [1]: in Figure 4 the same gelscans were mistakenly pasted to illustrate splicing changes of: i) BIM in KIJ-265T and KIJ308T cells,and ii) MCL-1 in UOK171 and KIJ-265T [...].

11.
Front Immunol ; 10: 1427, 2019.
Article in English | MEDLINE | ID: mdl-31297113

ABSTRACT

Sepsis remains a major challenge in translational research given its heterogeneous pathophysiology and the lack of specific therapeutics. The use of humanized mouse chimeras with transplanted human hematopoietic cells may improve the clinical relevance of pre-clinical studies. However, knowledge of the human immuno-inflammatory response during sepsis in humanized mice is scarce; it is unclear how similar or divergent mouse and human-origin immuno-inflammatory responses in sepsis are. In this study, we evaluated the early outcome-dependent immuno-inflammatory response in humanized mice generated in the NSG strain after cecal ligation and puncture (CLP) sepsis. Mice were observed for 32 h post-CLP and were assigned to either predicted-to-die (P-DIE) or predicted-to-survive (P-SUR) groups for retrospective comparisons. Blood samples were collected at baseline, 6 and 24 h, whereas the bone marrow and spleen were collected between 24 and 32 h post-CLP. In comparison to P-SUR, P-DIE humanized mice had a 3-fold higher frequency of human splenic monocytes and their CD80 expression was reduced by 1.3-fold; there was no difference in the HLA-DR expression. Similarly, the expression of CD80 on the bone marrow monocytes from P-DIE mice was decreased by 32% (p < 0.05). Sepsis induced a generalized up-regulation of both human and murine plasma cytokines (TNFα, IL-6, IL-10, IL-8/KC, MCP-1); it was additionally aggravated in P-DIE vs. P-SUR. Human cytokines were strongly overridden by the murine ones (approx. ratio 1:9) but human TNFα was 7-fold higher than mouse TNFα. Interestingly, transplantation of human cells did not influence murine cytokine response in NSG mice, but humanized NSG mice were more susceptible to sepsis in comparison with NSG mice (79 vs. 33% mortality; p < 0.05). In conclusion, our results show that humanized mice reflect selected aspects of human immune responses in sepsis and therefore may be a feasible alternative in preclinical immunotherapy modeling.


Subject(s)
Cytokines/immunology , Sepsis/immunology , Animals , Disease Models, Animal , Humans , Mice , Sepsis/pathology
12.
Sci Rep ; 9(1): 3289, 2019 03 01.
Article in English | MEDLINE | ID: mdl-30824730

ABSTRACT

Septic shock is associated with multiple injuries to organs and tissues. These events may induce the regenerative response of adult stem cells. However, little is known about how endogenous stem cells are modulated by sepsis. This study analyzed the circulation of hematopoietic stem cells (HSCs), endothelial progenitor cells (EPCs) and very small embryonic-like stem cells (VSELs) in the peripheral blood of patients with septic shock. Thirty-three patients with septic shock and twenty-two healthy control subjects were enrolled in this prospective observational study. Blood samples were collected on the first, third and seventh days of septic shock. Populations of stem cells were analyzed by flow cytometry. Chemotactic mediators were analyzed by HPLC and ELISA. Populations of early HSCs (Lin-CD133+CD45+ and CD34+CD38-) were mobilized to the peripheral blood after an initial decrease. Mobilized HSCs showed significantly increased expression of Ki-67, a marker of cell proliferation. Circulating EPCs and VSELs were mobilized to the blood circulation upon the first day of sepsis. Patients with a greater number of Lin-CD133+CD45+ HSCs and Lin-CD34+CD45- VSELs had a significantly lower probability of 60-day survival. The concentration of CXCL12 was elevated in the blood of septic patients, while the concentration of sphingosine-1-phosphate was significantly decreased. As an emergency early response to sepsis, VSELs and EPCs were mobilized to the peripheral blood, while the HSCs showed delayed mobilization. Differential mobilization of stem cell subsets reflected changes in the concentration of chemoattractants in the blood. The relationship between the probability of death and a large number of HSCs and VSELs in septic shock patients can be used as a novel prognostic marker and may provide new therapeutic approaches.


Subject(s)
Antigens, CD/blood , Chemokine CXCL12/blood , Endothelial Progenitor Cells/metabolism , Hematopoietic Stem Cells/metabolism , Shock, Septic/blood , Aged , Biomarkers/blood , Endothelial Progenitor Cells/pathology , Female , Hematopoietic Stem Cells/pathology , Humans , Male , Middle Aged , Prospective Studies , Shock, Septic/mortality , Shock, Septic/pathology
13.
PLoS One ; 13(3): e0195035, 2018.
Article in English | MEDLINE | ID: mdl-29596519

ABSTRACT

Amnion is a membrane surrounding the embryo/fetus which determine growth factors and interleukins with angiogenic, immunogenic, and anti-inflammatory properties. The aim of the present study was to investigate the effects of conditioned culture medium from 24-h cultures of human amnion (hAM CCM) on migration and proliferation of human umbilical vein endothelial primary cells (HUVECs), freshly isolated bone marrow mononuclear cells (BM MNCs), and Jurkat leukemia cell line. Amnion membrane was freshly isolated from healthy placenta and its fragments cultured in vitro to produce hAM CCM. Members of the IGFBP protein family made up one third of all assayed proteins present in the hAM medium. The hAM CCM did not affect the proliferation rate of HUVECs or MNCs, but we observed more intensive migration of those cells, and lower expression of CD31 surface antigen on HUVECs as compared to control cultures. In contrast, Jurkat cells did not respond to hAM CCM treatment by proliferation or mobility change. The conditioned medium from 24-h cultures of human amnion is easy to obtain and is a convenient source of various growth and other factors that may be useful in practical medicine.


Subject(s)
Amnion/metabolism , Leukemia/pathology , Cell Movement , Cell Proliferation , Culture Media, Conditioned , Human Umbilical Vein Endothelial Cells/cytology , Humans , Jurkat Cells
14.
Blood ; 130(12): 1418-1429, 2017 09 21.
Article in English | MEDLINE | ID: mdl-28698206

ABSTRACT

Reed-Sternberg (RS) cells of classical Hodgkin lymphoma (cHL) express multiple immunoregulatory proteins that shape the cHL microenvironment and allow tumor cells to evade immune surveillance. Expression of certain immunoregulatory proteins is modulated by prosurvival transcription factors, such as NFκB and STATs. Because these factors also induce expression of the oncogenic PIM1/2/3 serine/threonine kinases, and as PIMs modulate transcriptional activity of NFκB and STATs, we hypothesized that these kinases support RS cell survival and foster their immune privilege. Here, we investigated PIM1/2/3 expression in cHL and assessed their role in developing RS cell immune privilege and survival. PIM1/2/3 were ubiquitously expressed in primary and cultured RS cells, and their expression was driven by JAK-STAT and NFκB activity. Genetic or chemical PIM inhibition with a newly developed pan-PIM inhibitor, SEL24-B489, induced RS cell apoptosis. PIM inhibition decreased cap-dependent protein translation, blocked JAK-STAT signaling, and markedly attenuated NFκB-dependent gene expression. In a cHL xenograft model, SEL24-B489 delayed tumor growth by 95.8% (P = .0002). Furthermore, SEL24-B489 decreased the expression of multiple molecules engaged in developing the immunosuppressive microenvironment, including galectin-1 and PD-L1/2. In coculture experiments, T cells incubated with SEL24-B489-treated RS cells exhibited higher expression of activation markers than T cells coincubated with control RS cells. Taken together, our data indicate that PIM kinases in cHL exhibit pleiotropic effects, orchestrating tumor immune escape and supporting RS cell survival. Inhibition of PIM kinases decreases RS cell viability and disrupts signaling circuits that link these cells with their niches. Thus, PIM kinases are promising therapeutic targets in cHL.


Subject(s)
Hodgkin Disease/enzymology , Hodgkin Disease/immunology , Protein Serine-Threonine Kinases/metabolism , Proto-Oncogene Proteins c-pim-1/metabolism , Proto-Oncogene Proteins/metabolism , Reed-Sternberg Cells/enzymology , Reed-Sternberg Cells/pathology , Cell Line, Tumor , Cell Survival , Chemokines/metabolism , Down-Regulation , Hodgkin Disease/pathology , Humans , Immunomodulation , Janus Kinases/metabolism , Lymphocyte Activation/immunology , NF-kappa B/metabolism , Protein Biosynthesis , RNA Caps/metabolism , STAT Transcription Factors/metabolism , Signal Transduction , T-Lymphocytes/immunology
15.
J Clin Invest ; 127(6): 2392-2406, 2017 Jun 01.
Article in English | MEDLINE | ID: mdl-28481221

ABSTRACT

Quiescent and proliferating leukemia cells accumulate highly lethal DNA double-strand breaks that are repaired by 2 major mechanisms: BRCA-dependent homologous recombination and DNA-dependent protein kinase-mediated (DNA-PK-mediated) nonhomologous end-joining, whereas DNA repair pathways mediated by poly(ADP)ribose polymerase 1 (PARP1) serve as backups. Here we have designed a personalized medicine approach called gene expression and mutation analysis (GEMA) to identify BRCA- and DNA-PK-deficient leukemias either directly, using reverse transcription-quantitative PCR, microarrays, and flow cytometry, or indirectly, by the presence of oncogenes such as BCR-ABL1. DNA-PK-deficient quiescent leukemia cells and BRCA/DNA-PK-deficient proliferating leukemia cells were sensitive to PARP1 inhibitors that were administered alone or in combination with current antileukemic drugs. In conclusion, GEMA-guided targeting of PARP1 resulted in dual cellular synthetic lethality in quiescent and proliferating immature leukemia cells, and is thus a potential approach to eradicate leukemia stem and progenitor cells that are responsible for initiation and manifestation of the disease. Further, an analysis of The Cancer Genome Atlas database indicated that this personalized medicine approach could also be applied to treat numerous solid tumors from individual patients.


Subject(s)
Antineoplastic Agents/pharmacology , Cell Proliferation , Leukemia/genetics , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Animals , Cell Line, Tumor , Cell Transformation, Neoplastic , Cricetinae , DNA Breaks, Double-Stranded , DNA End-Joining Repair , Genes, BRCA1 , Genes, BRCA2 , Genes, Lethal , Genes, abl , Humans , Leukemia/drug therapy , Mice , Mice, Inbred NOD , Mice, Knockout , Mice, SCID , Mouse Embryonic Stem Cells/physiology , Phthalazines/pharmacology , Piperazines/pharmacology , Transcriptome , Xenograft Model Antitumor Assays
16.
Bioconjug Chem ; 28(2): 419-425, 2017 02 15.
Article in English | MEDLINE | ID: mdl-27990800

ABSTRACT

Robust detection of bacteria can significantly reduce risks of nosocomial infections, which are a serious problem even in developed countries (4.1 million cases each year in Europe). Here we demonstrate utilization of novel multifunctional bioconjugates as specific probes for bacteria detection. Bifunctional magnetic-fluorescent microparticles are coupled with bacteriophages. The T4 bacteriophage, due to its natural affinity to bacterial receptors, namely, OmpC and LPS, enables specific and efficient detection of Escherichia coli bacteria. Prepared probes are cheap, accessible (even in nonbiological laboratories), as well as versatile and easily tunable for different bacteria species. The magnetic properties of the bioconjugates facilitate the separation of captured target bacteria from other components of complex samples and other bacteria strains. Fluorescence enables simple analysis. We chose flow cytometry as the detection method as it is fast and widely used for biotests. The capture efficiency of the prepared bioconjugates is close to 100% in the range of bacteria concentrations from tens to around 105 CFU/mL. The limit of detection is restricted by flow cytometry capabilities and in our case was around 104 CFU/mL.


Subject(s)
Bacteriophage T4/metabolism , Escherichia coli/isolation & purification , Flow Cytometry/methods , Fluorescent Dyes/metabolism , Fluorescent Dyes/chemistry , Microspheres , Time Factors
17.
Int J Mol Sci ; 17(10)2016 Sep 28.
Article in English | MEDLINE | ID: mdl-27690003

ABSTRACT

Serine and arginine rich splicing factor 2(SRSF2) belongs to the serine/arginine (SR)-rich family of proteins that regulate alternative splicing. Previous studies suggested that SRSF2 can contribute to carcinogenic processes. Clear cell renal cell carcinoma (ccRCC) is the most common subtype of kidney cancer, highly aggressive and difficult to treat, mainly due to resistance to apoptosis. In this study we hypothesized that SRSF2 contributes to the regulation of apoptosis in ccRCC. Using tissue samples obtained from ccRCC patients, as well as independent validation on The Cancer Genome Atlas (TCGA) data, we demonstrate for the first time that expression of SRSF2 is decreased in ccRCC tumours when compared to non-tumorous control tissues. Furthermore, by employing a panel of ccRCC-derived cell lines with silenced SRSF2 expression and qPCR arrays we show that SRSF2 contributes not only to splicing patterns but also to expression of multiple apoptotic genes, including new SRSF2 targets: DIABLO, BIRC5/survivin, TRAIL, BIM, MCL1, TNFRSF9, TNFRSF1B, CRADD, BCL2L2, BCL2A1, and TP53. We also identified a new splice variant of CFLAR, an inhibitor of caspase activity. These changes culminate in diminished caspase-9 activity and inhibition of apoptosis. In summary, we show for the first time that decreased expression of SRSF2 in ccRCC contributes to protection of cancer cells viability.

18.
Oncotarget ; 7(46): 75551-75560, 2016 11 15.
Article in English | MEDLINE | ID: mdl-27705909

ABSTRACT

Cancer including melanoma may be ''addicted" to double strand break (DSB) repair and targeting this process could sensitize them to the lethal effect of DNA damage. PARP1 exerts an important impact on DSB repair as it binds to both single- and double- strand breaks. PARP1 inhibitors might be highly effective drugs triggering synthetic lethality in patients whose tumors have germline or somatic defects in DNA repair genes. We hypothesized that PARP1-dependent synthetic lethality could be induced in melanoma cells displaying downregulation of DSB repair genes. We observed that PARP1 inhibitor olaparib sensitized melanomas with reduced expression of DNA ligase 4 (LIG4) to an alkylatimg agent dacarbazine (DTIC) treatment in vitro, while normal melanocytes remained intact. PARP1 inhibition caused accumulation of DSBs, which was associated with apoptosis in LIG4 deficient melanoma cells. Our hypothesis that olaparib is synthetic lethal with LIG4 deficiency in melanoma cells was supported by selective anti-tumor effects of olaparib used either alone or in combination with dacarbazine (DTIC) in LIG4 deficient, but not LIG4 proficient cells. In addition, olaparib combined with DTIC inhibited the growth of LIG4 deficient human melanoma xenografts. This work for the first time demonstrates the effectiveness of a combination of PARP1 inhibitor olaparib and alkylating agent DTIC for treating LIG4 deficient melanomas. In addition, analysis of the TCGA and transcriptome microarray databases revealed numerous individual melanoma samples potentially displaying specific defects in DSB repair pathways, which may predispose them to synthetic lethality triggered by PARP1 inhibitor combined with a cytotoxic drug.


Subject(s)
Antineoplastic Agents/pharmacology , DNA Ligase ATP/genetics , Melanoma/genetics , Melanoma/metabolism , Phthalazines/pharmacology , Piperazines/pharmacology , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Synthetic Lethal Mutations , Animals , Cell Line, Tumor , DNA Breaks, Double-Stranded , DNA Ligase ATP/deficiency , DNA Repair , Dacarbazine/pharmacology , Disease Models, Animal , Drug Synergism , Histones/metabolism , Humans , Melanocytes/drug effects , Melanocytes/metabolism , Mice , Xenograft Model Antitumor Assays
19.
Mediators Inflamm ; 2016: 3074902, 2016.
Article in English | MEDLINE | ID: mdl-27413252

ABSTRACT

Identification of reliable biomarkers is key to guide targeted therapies in septic patients. Expression monitoring of monocyte HLA-DR and neutrophil CD64 could fulfill the above need. However, it is unknown whether their expression on circulating cells reflects the status of tissue resident cells. We compared expressions of HLA-DR and CD64 markers in the circulation and airways of septic shock patients and evaluated their outcome prognostic value. The expression of CD64 on neutrophils and HLA-DR on monocytes was analyzed in the peripheral blood and mini-bronchoalveolar lavage fluid cells by flow cytometry. Twenty-seven patients with septic shock were enrolled into the study. The fluorescence intensity of HLA-DR on circulating monocytes was 3.5-fold lower than on the pulmonary monocytes (p = 0.01). The expression of CD64 on circulating and airway neutrophils was similar (p = 0.47). Only the expression of CD64 on circulating neutrophils was higher in nonsurvivors versus survivors (2.8-fold; p = 0.031). Pulmonary monocytes display a higher level of HLA-DR activation compared to peripheral blood monocytes but the expression of neutrophil CD64 is similar on lung and circulating cells. Death in septic patients was effectively predicted by neutrophil CD64 but not monocytic HLA-DR. Prognostic value of cellular activation markers in septic shock appears to strongly depend on their level of compartmentalization.


Subject(s)
HLA-DR Antigens/blood , HLA-DR Antigens/metabolism , Lung/metabolism , Receptors, IgG/blood , Receptors, IgG/metabolism , Shock, Septic/blood , Shock, Septic/metabolism , Adult , Aged , Female , Flow Cytometry , Humans , Male , Middle Aged , Monocytes/metabolism , Neutrophils/metabolism
20.
J Artif Organs ; 19(3): 270-7, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27139241

ABSTRACT

Human endothelial cells are used in experimental models for studying in vitro pathophysiological mechanisms of different diseases. We developed an original bioreactor, which can simulate human blood vessel, with capillary polysulfone membranes covered with the human umbilical vein endothelial cells (HUVECs) and we characterized its properties. The elaborated cell seeding and culturing procedures ensured formation of a confluent cell monolayer on the inside surface of capillaries within 24 h of culturing under the shear stress of 6.6 dyn/cm(2). The optimal density of cells to be seeded was 60,000 cells/cm(2). Labeling HUVECs with carboxyfluorescein succinimidyl ester (CFSE) did not influence cells' metabolism. Flow cytometry-based analysis of HUVECs stained with CFSE demonstrated that in a presence of the shear stress cells' proliferation was much inhibited (after 72 h proliferation index was equal to 1.9 and 6.2 for cultures with and without shear stress, respectively) and the monolayer was formed mainly due to migration and spreading of cells that were physiologically elongated in a direction of the flow. Monitoring of cells' metabolism showed that HUVECs cultured in a presence of the shear stress preferred anaerobic metabolism and they consumed 1.5 times more glucose and produced 2.3 times more lactate than the cells cultured under static conditions. Daily von Willebrand factor production by HUVECs was near 2 times higher in a presence of the shear stress. The developed model can be used for at least 3 days in target studies under conditions mimicking the in vivo state more closely than the static HUVEC cultures.


Subject(s)
Bioreactors , Endothelial Cells/cytology , Endothelium, Vascular/cytology , Stress, Mechanical , Cells, Cultured , Endothelial Cells/physiology , Endothelium, Vascular/physiology , Humans , Models, Biological
SELECTION OF CITATIONS
SEARCH DETAIL
...